What Is An Automated Systems Integrator?

If you’ve become involved in the world of industrial automation, you may have heard the terms “integrator,” “automation integrator,” or “automated systems integrator.” The term “systems integrator” exists in both the fields of industrial automation and information systems. There are some blurred lines between those fields, as both involve networking, computers, and programming. In this article, we’ll go over the concept of automated systems integration within the fields of industrial automation and manufacturing.

Working to begin or advance your career?

Our goal is to get you in touch with organizations that are interested in your success.


Let us help you find opportunities for employment and education in your area.

We’ll never charge for this service. Click one of the buttons below to get started; registration only takes a few moments!

What Is An Automation Integrator?

Let’s say you’ve just opened a new business. You want to manufacture pencils.

Several colored pencils.

Your company has a solid business plan, funding, a building, your management team, and employees. You know the colors that you want to manufacture and even how you want to market your products. There’s just one little problem… You don’t know anything about how to actually manufacture pencils. That is where a systems integrator comes in.

An integrator is a company that specializes in bringing systems, equipment, and machinery together to create a manufacturing solution. Thus, an integrator “integrates” whatever types of equipment and controls are required to turn separate machines into an assembly line (or other automated solution). The machines that are integrated may or may not be designed to work together easily. To do the job, the integrator must overcome any technical challenges to build a complete solution.

In this sense, an integrator transforms unrelated machinery and electronics into a factory. You can think of a factory as a sort of monstrous Rube Goldberg machine that converts raw materials into marketable products.

A view of the Frame line in the Tesla Model S factory. Many robots can be seen working on or prepared to work on the frame of the vehicle as it travels down a conveyor system in the center of the automation line. It's likely that Tesla designed this assembly line and then commissioned an automated systems integrator to purchase, setup, and program the manufacturing equipment.
The Tesla Model S Framer

What Kinds of Equipment Does An Automated Systems Integrator Have to Bring Together?

Consider everything going on in the image above (view full size here).

Conveyor Systems

Conveyor Beds

The red and grey assemblies in the center of the image are “conveyor beds.” Conveyors are custom-built fixtures that transport units to each “station” on the assembly line. Integrators fabricate the frames of the conveyor beds from stock steel. Industrial motors and roller systems built into the conveyor do the job of getting the units to physically move down the line.

This is just one example of a conveyance system. Conveyance comes in all shapes and sizes, depending on what is being manufactured. The conveyor beds shown above likely weigh around a ton. At the other end of the spectrum, you have smaller components like circuit boards. Conveyor systems of this size weigh only a few pounds.

Pallets

The production units themselves ride through the conveyor system on “pallets.” Like a conveyor bed, a pallet is custom-built to hold and carry each unit down the line. Pallets ride through the automation, passing from conveyor bed to conveyor bed.

Additionally, pallets are built to precise tolerances. When a unit arrives in a station, the robots will need to do their work in as close to the exact same physical location on the unit each time. For this reason, pallets must all be almost exactly the same, so that each unit will sit in a very specific position at each station.

Pallets hold each unit in place with carefully sized pins, or by other mechanical means. This helps to ensure proper positioning. In industrial automation, “repeatability” is the name of the game. Repeatability is the idea that, in automation, the same exact thing should happen in the same exact place every time.

Systems Integrator Roles

What is an automated systems integrator responsible for in regards to conveyance? Integrators will likely build, position, level, and program the conveyor systems. Systems integrators must take great care in many details to ensure that the conveyors will run smoothly. As examples, beds must be precisely assembled and leveled, and many parameters must be programmed into each motor and drive system.

Robotics

You can see many robots in the image above. Each robot is ready to go in and work on the next vehicle.

How does each robot know where to go to do its job? Integrators must carefully plan, teach, and test motion for each robot. Also, each robot must be programmed to control and receive feedback from its End Of Arm Tool, or “EOAT”.

The robot is just a means of moving the EOAT to where it needs to be. What is an EOAT? The EOAT is what actually gets the work done in a robotic factory. There are many different types of End Of Arm Tools. Some examples include:

  • Material Handlers: move parts from one place to another
  • Machine Vision: records data, locates parts, or provides error-prevention
  • Joining: welders, riveters, or other equipment that fastens parts together

The robots above look like they’re carrying weld guns. Weld guns are used to “spot weld” the frame of the vehicle together. Welders work by touching the top and bottom of a part of the vehicle. Then, they pass a high current from one side of the gun to the other. The heat generated by this current flow welds the metal of the vehicle together.

For this reason, each weld gun needs a weld controller. Each weld controller has to be setup to output a certain amount of power. Further, this power setting has to be carefully tested to ensure that the gun generates the right amount of heat to form a good weld.

Safety, Sensors, Feedback, And Motion

  • Gates, fencing, light curtains, E-Stop buttons, and other safety devices exist throughout the automation equipment to protect the people that work in the area
  • Also, sensors, switches, operator buttons, and other input devices inform the PLC on the status and position of various equipment
  • Lights, buzzers, displays, valves, motors, actuators, and other output devices move parts and help humans understand what the equipment is doing

Imagine the variety of these components present on a large automation line. There may be several sensors on one machine. Further, each sensor may work differently and come from a different manufacturer. An automated systems integrator must be able to install and configure all of these many, many different industrial automation devices.

Programmable Logic Controllers (PLC’s)

A “PLC” (Programmable Logic Controller) is the brains of the operation. PLC’s accept inputs from the equipment and sensors. The PLC then performs processing, and sets outputs based on its programming. These outputs then control the actions that take place in the automation.

For example, an air supply line has an analog pressure sensor. Our pressure sensor sends a signal to the PLC that represents the pressure read at the sensor. The PLC has been programmed to interpret the signal sent from the sensor. In the PLC’s logic, the signal’s value is converted back to a pressure reading.

Then, integrators have programmed the PLC to check this pressure reading against a minimum pressure. If the pressure reading is lower than the minimum pressure, the PLC turns on a pump. In this case, the PLC sets outputs to the pump that command it to turn on. This is an example of how integrators might program a PLC to manage air pressure in a supply line.

PLC’s must be carefully programmed for each application. This programming must take into consideration concerns for safety, quality, efficiency, ease of use, and repair.

Human-Machine Interfaces (HMI’s)

To allow operators to interact with the machinery without having to know how to program a PLC, there needs to be one or more “HMI” (Human-Machine Interface) panels. An HMI is a programmable display; it’s basically a fancy computer monitor. Using an HMI, someone can interact with the PLC through buttons and other input devices on the screen. Many modern HMI’s are rugged touchscreen interfaces, built to withstand the industrial environment.

An example of a custom Human-Machine Interface screen. This screen shows several feedback and control points for a well control system. HMI's are an example of what an automated systems integrator might be responsible for.
An example of a custom HMI screen used to control a well

What Jobs Are Available In Automated Systems Integration?

Often, a manufacturer will approach a systems integration company with a system it wants built. The integrator then designs and builds a complete automation solution that will assemble the manufacturer’s product. Building an automation line from scratch requires a variety of skills and talents.

  • Managers oversee the business side of the operation
  • Mechanical Engineers, Electrical Engineers, Automation Engineers, and engineers from other specialties will design the systems. Engineers will ensure that the equipment and programming meets the customer’s specifications and any appropriate codes and regulations. In this regard, engineers must dig into the little details to understand, for instance, what type of sensor will fit a particular application. Engineers may perform PLC programming, HMI design, and development of “templates” of logic for use in the PLC and robotics
  • Millwrights cut and weld large assemblies, operate lifting equipment, and fasten components to the building’s structure. Also, millwrights are often responsible for servicing and repairing large motors, gearboxes, and other heavy-duty mechanical devices
  • Toolmakers fabricate detailed components to tight tolerances
  • Robot Technicians set up and program robotic systems
  • Similarly, PLC Technicians set up and program the controllers
  • Industrial Electricians wire and install a wide range of electrical components, and may also program PLC’s, robots, and other electronic controllers

These are the core positions that automation integration shops employ. That is, at least in terms of building the automated systems. There may also be any number of other administrative positions in marketing, sales, finance, and other fields. On the technical side of the house, integrators may also employ Software Engineers, IT Technicians, and Facilities Engineers.

What Is It Like Working For An Automated Systems Integrator?

A typical work flow for an integration project might be as follows:

  • Firstly, project planning and materials acquisition
  • Machine assembly and programming at the integration facility
  • Transportation to the customer
  • Once on-site, machine installation, debug, and trials at the customer facility
  • On-site support as the customer takes on ownership of the equipment
  • Lastly, project wrap-up

Work Life As An Automation Integrator

Given that many integration projects consist of building an automated assembly line from scratch, integration work often occurs at the customer location. Depending on the size of the integration shop and the size of the project to which you’re assigned, very high travel percentages may be required. In other words, automated systems integrators may spend as much as 90-100% of their time away from home.

Customers who have purchased large or complicated automation solutions may require support well in to the launch of the project. Because of this, on-site support requirements can range from days to years. If you are a competent member of the team or have done a lot of the programming on a certain line, the company may ask you to stay on the road for months. In this case, many companies allow for you to travel home every couple of weeks.

Providing support for the customer can be stressful. The automation equipment that your company has built is what the customer uses to make money. For this reason, they may not be very happy when it breaks down.

On the other hand, you may be able to land a design or commissioning position that does not require any travel. Those performing “machine assembly” at the shop may be able to enjoy a similar lifestyle to other 9-to-5 positions. Even so, many shops will have “surges” in the pace of work. There may be slow periods followed by stretches where your boss wants you working overtime every day of the week.

Pay And Benefits For Automation Integrators

The good news is that many integration shops offer very competitive wages and benefits. While on the road, many shops pay both overtime and “Per Diem.” Per Diem is extra money the integration shop will pay you for each day away from home. This additional pay covers food and other costs.

There can be other perks of travelling. For example, opportunities to visit new places, work in cool facilities, and network with other professionals. When I have had to travel for automation work, I have generally been put up at nice or at least decent hotels and had dinner out on the company dime.

Whether or not you’re travelling, you may have the ability to participate in training and continuing education so that you can continue to grow technically. Not to mention, you’re building industrial automation equipment! If you’re a person who enjoys working with automation, it’s hard to find a more interesting or challenging job.

What Should I Study If I Want to Work For an Integrator?

Of course, the answer to this question depends on what type of position you’re pursuing.

  • For a position as a skilled tradesperson (millwright, toolmaker, electrician), see if you can land an internship
    • In certain areas, certificate or Associate’s programs may be available to help you get a job as a skilled tradesperson
  • For engineering, complete a Bachelor’s degree in the field of your choice (Electrical Engineering, Mechanical Engineering, etc.)
    • Automated systems integrators may also hire persons with degrees in Industrial Automation or Mechatronics
  • If you want to work as a PLC or robotics technician, you may be able to complete a local or online training program to help get your foot in the door
    • Industrial electricians with PLC or robot experience should be qualified for this type of position

In Summary

Integrators make magic happen – they turn disparate systems into one large, cohesive “machine.”  From custom assembly of heavy, metal fixtures, to robot and controller programming, an integration shop has to be able to do it all.

Are you aspiring to work for an integrator, or would you like to relate your own work experience in integration? If so, share your story in the comments below!

If you enjoyed this article, make sure you don’t miss out on future content! Take a moment to sign up below. You can expect about 1-4 emails per month with the type of content you’ve read in this article.

Thanks for reading! Feel free to reach out in the comments below with any questions or comments.

NO and NC (Normally Open and Normally Closed) Proximity Sensor Basics

When I was learning PLC programming, I remember scratching my head about some of the concepts surrounding proximity sensors. Digital or analog, Normally Open (NO or N.O.), or Normally Closed (NC or N.C.)?  What exactly does it mean for a sensor to be NO or NC? What effect will it have when I’m checking the state of the sensor at the PLC or other controller?

Proximity sensors set up on an automation line.
Common “barrel proxes” (pronounced “prawksez”) set up to detect parts or features of parts as they move down a conveyor. When objects made of certain materials (depending on the sensor type) pass in front of a proximity sensor (sometimes referred to as a proximity switch), it is “made,” changing the state of its output signal.

Want to take the next step in your industrial automation career?

We want to help.


Are you looking for opportunities to advance your career and make more money?

At no cost to you, the Industrial Automation Connection can get you in touch with training and job opportunities in your area. Click one of the buttons below to get started!

NO and NC, and Other Proximity Sensor Basics

NO or NC refers to the way that a sensor is wired and in what state its output signal will be when the sensor is “made.” A sensor is “made” when an object is present that the sensor has been set up to detect. The characteristics of the sensor determine whether or not an object will detected. These characteristics can include its detection type (inductive, capacitive, ultrasonic, photoelectric, etc.), sensing range (how far away the part can be from the sensor), and other factors.  The point of a proximity sensor, or “prox,” is to know that an object is there or not there. When a sensor detects an object, its output state changes.

Digital sensors

Someone might refer to the types of proximity sensors described above as “digital proxes.”  In this context, digital has a somewhat different denotation than the typical use of the word outside of industrial automation. If a sensor is “digital,” it only has two possible output states: on or off.

There are a multitude of different sensors on the market. There are small sensors, large sensors, laser sensors, sensors like the barrel proxes above which have no configuration whatsoever, sensors that require quite a bit of set up, and everything in between. If a sensor’s sole purpose is to detect whether or not an object is present somewhere, its output is typically digital (either on or off). For this reason, people sometimes refer to sensors of this type as “switches”. Like a light switch in your home, they either turn an output on or off.

In this regard, you can think of the behavior of a prox switch or other digital output as being just like that of the paperclip switch that turned on a small lightbulb in your 2nd grade science class. The prox sensor is the paperclip, and the target passing in front of the prox is your hand pushing down on the paperclip to change the switch’s output state.

Analog sensors

Aside from digital outputs, there are devices with “analog” outputs. Analog sensors output a specific value within a range (anywhere from 2V to 10V, for instance). As one example, sensors with analog outputs can be used to tell a machine how far away something is.

Click the following link if you’d like to learn more about the differences between digital and analog sensors. For now, let’s take a look at how Normally Open and Normally Closed sensors differ in their behavior:

Normally Open Devices

A graph depicting an example of sensor output behavior for a Normally Open sensor. By default, the sensor's output is off, or "low." When the sensor detects an object in its sensing range, the output is switched on. When the object then leaves the sensor's range, the output returns to its default state of low.
This graph shows the behavior of a simple, Normally Open proximity sensor as an object passes in front of the sensor and then passes out of its sensing range. When an NO proximity sensor detects its target, its output signal is turned on (energized with voltage). When the object is no longer detected by the sensor, the output state changes back to the original state (no voltage on the signal wire). Click the image to view full size.

As mentioned above, the purpose of a proximity sensor is to tell a machine when something is present in front of the sensor.  So, what actually happens when the sensor detects an object?  Well, the sensor’s output changes state. This means that the sensor either energizes an output signal wire with a small amount of electricity, or not.

Like a light switch at your house that is off, an NO sensor will not, by default, put out a voltage to its output wire. Returning to the paperclip circuit analogy, an NO sensor’s default state is similar to the paperclip lifted off the thumbtack. The switch breaks the output circuit by default; hence, the output circuit is “normally open”. Referring to the graph above, when an NO sensor is in its default state (does not detect a target), the sensor’s output is off.

What happens when the sensor is made?

When an appropriate object passes within the sensor’s sensing range, the sensor outputs a voltage through its signal wire. This signal can indicate to a controller that the target has “made” the sensor. So long as the target remains within sensing range, the prox will continue to provide voltage on its output signal.

What’s the point of this? This is how the sensor “tells” the controller: “hey, I’m energizing my output as a signal to you that there is something in front of me right now.”

As you can see in the graph above, once the object passes out of the range of the sensor, the sensor will turn off its output. A controller would now see that the sensor is in its normal, “off” state.

As a brief aside, there are quite a few ways to refer to something as being “on” or “off”.  Below are some other ways you might hear someone refer to a signal as being on or off.  In my opinion, all of these are more or less equivalent:

OnOff
HighLow
EnergizedExtinguished
LitOut
MadeNot Made

Normally Closed Devices

NC sensors and other devices behave exactly opposite to NO devices in regards to their outputs. NC devices are, as indicated by their name, normally closed, meaning that their output is on by default.  Only when an object makes the sensor does the signal actually turn off.  Here’s a simplified graph of the signal behavior for an NC sensor:

A graph depicting an example of sensor output behavior for a Normally Closed sensor. By default, the sensor's output is high. When the sensor detects an object in its sensing range, the output is switched off. When the object then leaves the sensor's range, the output returns to its default state of being energized.
Here you can see that the behavior of a Normally Closed sensor is directly opposite that of an NO sensor; they are the negation of each other.
When an NC prox is made, the signal is actually “brought low.” Click the image to view full size.

If you understood the behavior of Normally Open sensors, then you also understand the behavior of Normally Closed sensors; one is simply the inverse of the other.  If an NO and NC sensor were set up to detect the same object, the NO sensor’s output would be on when the NC sensor was off, and vice-versa.

Default Output StateOutput State When Sensor Is Made
NO SensorsOffOn
NC SensorsOnOff

Why choose an NO or an NC sensor?

Due to these differences in output behavior, Normally Open and Normally Closed sensors are better or worse for certain applications.

All cables and electrical components will eventually fail.  To get an idea of why you might choose one sensor or another, let’s first talk about how we want our systems to behave when a cable or sensor is damaged, and we no longer get the signals we’re relying on to control machine motion.

The two most common types of electrical failures are “opens” and “shorts,” with opens being the most common.  An open is an unwanted break in a circuit. Cuts, crushing, or other damage to the cable can cause an open.

An example of a Normally Closed application: Emergency Stop

Modern factories are populated throughout with “E-Stop buttons”. Emergency Stop buttons can be used by anyone in the facility if an unsafe condition is observed. Slap an E-Stop, and all machine motion will come to a halt as quickly as possible.

A red emergency stop button that would be present throughout a factory for use in an emergency to stop the factory.
A typical E-Stop button.

Remember that you can think of a prox sensor as just another type of switch. What we traditionally think of as a switch is usually switched by mechanical action. Proxes are typically solid-state devices with internal electronics that turn outputs on and off. An E-Stop is an example of a true mechanical switch. When someone presses an E-Stop, metal contacts inside of the device open or close its output circuits.

NC or NO?

Let’s consider whether the E-Stop should be a Normally Open or Normally Closed device. With a Normally Open E-Stop, the button’s outputs will be off (open) when the button is in its default (not pressed) state.

In an emergency, someone hits the E-Stop.  The mechanical action of pressing the button causes the normally open contacts to close, energizing the button’s outputs. Now the controller can detect those outputs, and we can use this status in our logic to halt machine motion. Cool.

Except… let’s return to the concept of an unwanted break in our circuit. What happens if the cable that connects the E-Stop button to the controller has been damaged?

A simplified schematic depiction of an E-Stop circuit. A power supply on the left feeds power to an E-Stop switch which feeds an input to a controller on the right. There is a break in the connection between the E-Stop and controller.
A simplified depiction of an E-Stop circuit. The E-Stop is shown as an NO switch for the purpose of illustrating the concept; in reality, E-Stops are typically NC. If the E-Stop were NO, a break in the wire would prevent the stop signal from reaching the controller in an emergency. Click image to view full size.

Safety first

If the E-Stop is a Normally Open device, and its cable becomes damaged, then when we go to activate the E-Stop, we will never get a signal back to our controller telling it to halt production. To the controller, a damaged electrical system and the default output of a Normally Open switch look exactly the same. In either case, there would be no incoming voltage to the controller’s input.

If the E-Stop in this example were Normally Open, you would only check for its output signal when you needed it to stop the line. As a result, you have no way of knowing whether the button or cable is damaged until it’s too late. A Normally Open switch wouldn’t just be a bad choice for this application, it would be dangerous. In an emergency, an ineffective E-Stop could contribute to someone being severely injured or killed.

Making the right choice for the right application

For this reason, E-Stops and most safety devices are Normally Closed. When a Normally Closed E-Stop is in its default position, the contacts close the circuit and return a signal to the controller indicating that the system is safe. Because the E-Stop returns a signal constantly, any condition that causes the E-Stop signal to go low will be detected. Aside from someone actually pressing the button, some other possible causes for losing the E-Stop safe signal might include loss of power to the system, failure of the E-Stop’s cable, or failure of the E-Stop button itself.

Now, since our Normally Closed E-Stop is always sending a signal back to the controller when it’s in the safe position, we set our logic up so that we must constantly see the signal from the E-Stop to allow the factory to run.  You could think of this type of Normally Closed signal as a constant “thumbs-up” to the controller that the system is safe.  In the controller logic, machine motion would only be permitted when the expected signals from all safety devices are present.

A view of a pilot in the cockpit of an American military jet. The pilot is giving the thumbs up sign with his left hand.
Who’s got one thumb and flies a jet?

Along this same line of thought, other sensors that detect unsafe conditions, such as tank overfill, are typically Normally Closed. Because NC sensors return a signal by default, any loss of that signal will immediately indicate that the system is not safe.

Are you beginning or advancing your career in the field of industrial automation?

Let us help you take the next step.


There are organizations out there looking for people like yourself.

At no cost to you, IAC will work to connect you with opportunities in your area. Click one of the buttons below to get started!

An example of a Normally Open application: Part Present

For less safety-critical applications, Normally Open sensors work just fine and in fact are found more commonly in industrial automation than NC sensors.  In certain cases, use of an NO sensor would actually be preferable, and many people find it easier to interpret the behavior of NO sensors when it comes time to debug an electrical or programming issue.

“Part Present” applications, for instance, often use NO sensors.  Let’s say that you want a robot to pick up a part and move it to another location. When the robot moves to the “pick position,” you want to be able to verify that the part is positioned in the robot’s “end effector” before allowing the robot to attempt to move the part. An end effector is a fixture bolted to the robot arm that is custom-built for picking up a particular part.

Normally Open sensors are ideal for this type of Part Present detection, as they only send the signal that the part has been picked up if they actively sense material. If a cord or sensor is damaged in this type of application, the sensor will simply never output its signal. Because the robot won’t see the necessary signal, robot motion will halt until the problem can be corrected.

Two yellow Fanuc robots are moving pieces of metal in an automation cell.
Two Fanuc robots performing material handling operations in an automation cell.  Their end effectors are the orange fixtures attached to the ends of the robotic arms.  The end effectors likely use Normally Open “part present” sensors to verify that the part is properly loaded before moving away from the pickup positions.

NC and NO Sensors

There’s a common thread in both the Normally Closed and the Normally Open applications described above. With either NO or NC, you want positive indication before you allow the system to move. By positive indication, I mean that you want the PLC to see the signal from the sensor go high.

In the E-Stop application, you want to be able to move the system by default. You only want to disable motion if a certain condition is met (someone slaps the E-Stop). Hence, you want the signal to be on by default (Normally Closed). You only want the signal to go low if your system isn’t safe.

In the Part Present application, you want the robot to stop at the pickup position by default. You only want to enable motion under certain conditions (the part positioned properly in the end effector). Hence, you want the signal to be off by default (Normally Open). You only want the signal to go high if your part is properly loaded.


Hopefully, this has shed a bit of light on some of the basics of proximity sensors, including the concepts of Normally Open and Normally Closed. There is a lot to be said about the many sensors on the market and their functionality. Click the following link for an in-depth look at the various types of sensors and how they work.

Anything you wish we would add to this article? Send us an email or let us know in the comments section!

If you found value in this content, let IAC keep you posted whenever we have something new for you! Sign up below; it only takes a second. 🙂